

Current Transducer LA 255-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			250			
I _P	Primary current, measuring range			0 ± 500			
Î _{P max}	Measuring overload 1)		600				Α
R _M	Measuring resistance @		$T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}C$;
			$\mathbf{R}_{\mathrm{M}\;\mathrm{min}}$	$\mathbf{R}_{M\;max}$	$R_{_{ m M\ min}}$	$\mathbf{R}_{\mathrm{M}\;\mathrm{max}}$	
	with ± 12 V	$@ \pm 250 \text{ A}_{max}$	0	49	0	47	Ω
		@ $\pm 500 A_{max}$	0	7	0	5	Ω
	with ± 15 V	@ $\pm 250 A_{max}$	5	70	5	68	Ω
		@ $\pm 500 A_{max}$	5	17	5	15	Ω
	with ± 18 V	@ ± 250 A _{max}	25	93	25	91	Ω
		$@ \pm 500 \text{ A}_{max}$	25	29	25	27	Ω
	0 1 1			401	_		

	max	i	
I_{SN}	Secondary nominal r.m.s. current	125	mΑ
K _N	Conversion ratio	1:2000	
V _c	Supply voltage (± 5 %)	± 12 18	V
I _C	Current consumption	20 (@ ±15 V)+	$I_s mA$
V _b	R.m.s. rated voltage 2), safe separation	1625	V
-	basic isolation	3250	V

Accuracy - Dynamic performance data

General data						
f	Frequency bandwidth (- 3 dB)		DC 1	100	kHz	
di/dt	di/dt accurately followed		> 100		A/µs	
t _r	Response time $^{4)}$ @ 90 % of $\mathbf{I}_{P\;max}$		< 1		μs	
\mathbf{t}_{ra}	Reaction time @ 10 % of $I_{\rm P\ max}$		< 500		ns	
I_{OT}	Thermal drift of I _o	- 10°C + 85°C	± 0.15	± 0.30	mΑ	
I_{OM}	Residual current $^{3)}$ @ \mathbf{I}_{p} = 0, after an	n overload of 3 x I _{PN}		± 0.50	mΑ	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.15	mΑ	
			Тур	Max		
$\mathbf{e}_{\scriptscriptstyle oldsymbol{oldsymbol{L}}}$	Linearity error		< 0.1		%	
$egin{array}{c} \mathbf{x}_{\scriptscriptstyle G} \ \mathbf{e}_{\scriptscriptstyle L} \end{array}$	Overall accuracy @ I_{PN} , $T_A = 25$ °C		± 0.8		%	

General data

	ciiciai aata			
T _A	Ambient operating temperature		- 10 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	35	Ω
		$T_A = 85^{\circ}C$	37	Ω
m	Mass		110	g
	Standards 5)		EN 50178	

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- ²⁾ Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

 $I_{PN} = 250 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060427/4

Dimensions LA 255-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- · Connection of secondary
- \pm 0.5 mm
- 2 holes \varnothing 5.5 mm
- 23 x 18 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.